LabA: Writing a LC-3 Assembler

September 25, 2024

1 Introduction

In this lab, you are required to implement a simple LC-3 assembler. Your assembler should take LC-3
assembly code as input and output the translated binary code in text form. The purpose of this lab is to:

» Understand the basic syntax and instruction set of LC-3 assembly language.
* Understand how an assembler works.

* Learn the basic usage of CMake and improve the ability to program in C or C++.

We provide a basic framework. We have completed many complex and unimportant tasks in the
framework and provided many test cases. You only need to complete the core part of the assembler.
You can also write the assembler from scratch using any programming language you like.

2 Environment Setup

If you choose to use the framework we provide, you can set up your environment as follows.

2.1 Configure the C and C++ Compilation Environment

The framework is written in C++ and provides C bindings, so you can use C or C++ to complete the
lab. You need a C++ compiler to compile the framework code. If you choose to use C to complete the
lab, you also need a C compiler.

On Windows, you can use the MSVC compiler toolset to compile C and C++ code. We recommend
you to install Visual Studio, which will serve as your IDE and install MSVC and other tools you may need
and configure the environment for you. You can read this tutorial to learn how to install and configure
Visual Studio.

On Linux, you can use the gcc/g++ or clang/clang++ compiler to compile C and C++ code. You
can install the build-essential package, which will install the gcc/g++ compiler and other tools you
may need:

sudo apt-get install build-essential

Although our framework supports you to complete the lab on Windows, we still recommend you
to finish it on Linux. The error diagnosis of MSVC may not be as friendly as gcc and clang, and it is
easier to configure the development environment on Linux.

https://visualstudio.microsoft.com/zh-hans/
https://github.com/HO-COOH/CPPDevOnWindows?tab=readme-ov-file#setting-up-visual-studio

2.2 Install CMake

We use CMake to manage the compilation process. On Windows, you can download the installer from
the official website. You can read this tutorial to learn how to install and configure CMake on Windows.
On Linux, you can install CMake using the package manager:

sudo apt-get install cmake

2.3 Setup your IDE (Optional)

We recommend you to use an IDE to complete the lab, as an IDE can provide you with many convenient
features, such as code completion and debugging. Many mature IDEs also support CMake projects, so
you can easily import the framework code we provide.

On Windows, Visual Studio is a good choice. You can install and configure the compiler toolchain
when installing Visual Studio. CLion is a powerful cross-platform IDE that provides detailed and rich
code suggestions and error diagnosis. You can also use CLion on Linux. We also recommend using
Visual Studio Code, a lightweight cross-platform editor that supports rich plugins and can meet most
development needs. We recommend you to use the clangd plugin to provide code completion and error
diagnosis functions.

2.4 Configure and Compile the Framework

You need to download the framework code according to the instructions of the TA and unzip it to your
working directory. Assume that your code is stored in the 1aba directory.

If you want to use C++ to complete the lab, you need to execute the following commands to con-
figure the framework code:

cd laba
cmake —-S . -B build -DUSE_CPP=0N

On Windows, you may need to replace cmake with cmake. exe.
On the other hand, if you want to use C to complete the lab, you need to execute the following
commands to configure the framework code:

cd laba
cmake -S . -B build -DUSE_CPP=0FF

For the above two commands, build is the build directory generated by CMake. You can specify
the name of the build directory you like. CMake will put the files generated during the build process
in this directory.

If CMake reports an error during this process, you may need to read the error message carefully
and check your compilation environment. We hope you can search for error messages and try to solve
the problem, so that you can better understand the compilation process. If you cannot solve it indepen-
dently, we also welcome you to seek help from the TA.

You can enable optimization compilation by adding the -DCMAKE_BUILD_ TYPE=Release option,
which can improve the speed of the program. However, compiler optimization may make debugging
difficult, so we recommend you to use the Debug mode when debugging. In addition, if you find that
your program behaves differently before and after optimization, it is very likely that there is undefined
behavior in your code.

If you use clangd, you may need to add the -DCMAKE_EXPORT_COMPILE_COMMANDS=0N option to
generate the compile_commands. json file.

After configuring the framework code, you can compile it by executing the following command:

2

https://cmake.org/download/
https://github.com/HO-COOH/CPPDevOnWindows?tab=readme-ov-file#download--install-cmake
https://www.jetbrains.com/clion/
https://code.visualstudio.com/
https://clangd.llvm.org/installation

cmake --build build

You can add the -j option to enable multi-threaded compilation. You can find the executable file in
the build directory, named 1c3-assembler.

During the build process, you may see some warnings, such as unused variables. This is because
you have not completed the framework code yet, so you don’t need to worry about these warnings.
After you complete the lab, your code should not generate any warnings.

For each modification of the code, you need to execute the cmake --build build command
to recompile the code.

3

Framework Introduction

The structure of the framework code is as follows:

L]

./CMakeLists.txt

./ .clang-format

./cmake

./include

|-- ./include/assembler

“-- ./include/assembler-c
./solution

|-- ./solution/solution.c

“-- ./solution/solution.cpp
./src

./test

|-- ./test/input

“-- ./test/output

./unittest

|-- ./unittest/instruction_test.cpp
“-- ./unittest/parser_test.cpp

CMakeLists.txt: The root CMake configuration file.

.clang-format: The clang-format configuration file. You can use clang-format to format
your code, but it is not required.

cmake folder: Contains the CMake scripts for adding third-party dependencies, running tests,
etc. Note that all the third-party dependencies have been added to the framework code, so that
you do not need to install them manually.

include folder: Header files. assembler folder contains the header files of the assembler,
while assembler-c folder contains the header files of the C bindings. For students who use C
to complete the lab, you should only use the header files in the assembler-c folder.

solution folder: This is where you should implement your assembler. We have provided the
declarations of the functions you need to implement, as well as detailed documentation to guide
your implementation. For students who use C to complete the lab, you should implement
the functions in solution.c. Otherwise, you should implement the functions in solution
.cpp. If you modify the file that does not match the language you choose, your changes will not
be compiled.

* src folder: The implementation of the framework. You do not need to modify the code, but you
can read it to understand the framework.

* test and unittest folder: Contain the test cases.

3.1 Language Standard and Third-party Dependencies

The framework of this lab only uses C++11 features, so mainstream compilers are sufficient to compile
our code. However, you can use a higher version of the C/C++ standard to enjoy more features as
long as your compiler supports the features you are using. If you want to use a higher version of the
C or C++ standard, you should modify the CMakeLists.txt file in the root directory of the project
and set the CMAKE_CXX_STANDARD and CMAKE _C_STANDARD variables. For example, you can use the
std: :ranges library feature by setting CMAKE_CXX_STANDARD to 20:

set (CMAKE_CXX_STANDARD 20)

Please note that you should ensure that your compiler supports the C++ standard you are using.

Our framework uses GoogleTest to provide unit test support, and CLI11 to provide command line
argument parsing support. The source code of these third-party dependencies has been included in
the project, so you do not need to install and configure them. These dependencies are only used to
implement the framework. When you complete the lab, you should not use any other third-party
libraries. You only need to use the C/C++ standard library to complete the lab.

3.2 Test Your Code

During your lab, you may need to test the correctness of your code frequently. We provide you with
some test cases that you can use to verify the correctness of your code. Although our test cases cover
most cases, you can still write more test cases to verify your code.

Our code contains two folders, unittest and test. The unittest folder contains unit test cases
supported by GoogleTest. If you are familiar with GoogleTest, you can write more unit test cases to
verify your code. The test folder contains two subfolders, input and output. The input folder
contains some LC-3 assembly code files, which will be used as input to your assembler, and the test
will pass only if the content of the corresponding file in the output folder is consistent with the output
of the assembler.

3.2.1 Run the Test

You can run the test using the following command:

cd build # Enter the build directory

cmake --build . # Ensure that you have built the project
before running the test.

ctest

On Windows, you may need to replace ctest with ctest.exe.
You may get the following output:

Test project laba/build
Start 1: ParserTest.TokenEOLAndEOF
1/49 Test #1: ParserTest.TokenEOLAndEQF Passed 0.00 sec

https://github.com/google/googletest
https://github.com/CLIUtils/CLI11

Start 49: parse-operand-listb
49/49 Test #49: parse-operand-listb **xxFailed 0.01 sec

27}, tests passed, 36 tests failed out of 49
Total Test time (real) = 0.47 sec

The following tests FAILED:
7 - ParserTest.TokenStringLiteral (Failed)

49 - parse-operand-list5 (Failed)
Errors while running CTest
Output from these tests are in:
Use "--rerun-failed --output-on-failure" to re-run the failed cases verbosely.

You may notice that ctest reports that 36 out of 49 tests failed. This is because you have not completed
the lab yet. You can run

ctest —-output-on-failure
to view detailed output of the failed tests. You can run
ctest -R <test_name>

to run a specific test case.

3.2.2 Write Your Own Test

If you are familiar with GoogleTest, you can write more unit test cases in the unittest folder. A
simpler way is to write more LC-3 assembly code files in the test/input folder, and write the expected
output in the test/output folder. For example, you can create a file named example. in in the test
/input folder, with the following content:

.ORIG x3000
ADD R1, R2, R3
.END

Then create a file named example.out in the test/output folder, with the following content:
(3000) 0001001010000011

1.e., the machine code of this ADD instruction.
Each time you add a new test case, you need to reconfigure CMake and run the test:

cd build # Enter the build directory

cmake .. # Reconfigure CMake

ctest

ctest -R example # You can only run the test case named example.

and you will see whether your new test case has passed in the test results.

3.2.3 Run the Assembler

You can find the generated executable file 1c3-assembler in the build directory. You can run the
assembler directly and observe its output. For example, given an LC-3 assembly code file named
example.asm, you can run the following command:

./1c3-assembler example.asm

The assembler will translate the LC-3 assembly code in example.asm into binary code and output
it to the standard output. Note that on Windows, you may need to replace ./1c3-assembler with
lc3-assembler.exe.

4 Step by Step Completion of the Lab

Our assembler needs to process LC-3 assembly code in text form and translate it into binary form.
Processing strings is a complex and error-prone process, so we divide it into several steps to complete
it step by step. In each step, we leave some unimplemented parts for you to complete. We hope you
can complete this lab step by step like reading a continuous story.

4.1 Step 1: Tokenize LC-3 Assembly Code

So how do we convert a string into a series of “instructions”? The LC-3 assembly code text entered
by the user may contain comments, any number of spaces and tabs, any number of blank lines, and
even strange syntax errors. So our first step is to break down the source code into individual “tokens”,
which allows us to eliminate the interference of these irrelevant factors and extract the instructions we
need.

4.1.1 Whatis a Token?

Token is a concept in compilers, representing the smallest unit in the source code. You can think of a
token as a word in the source code. Our assembler will not directly process a character in the source
code, but a whole token. In this step, the assembler needs to extract meaningful words from the source
code and identify the specific types of these words, such as labels, instructions, operands, etc. The
assembler will ignore useless spaces, tabs, comments, etc., so that we will not be disturbed by these
contents in the subsequent steps.

For example, for the following LC-3 assembly code:

LOOP AND R3, R3, #0, ; Clear R3

Our assembler will break it down into the following tokens. You may notice that we ignore comments

Word LOOP AND R3 , R3 , #0 , EQF

Type Label O0Opcode Register Comma Register Comma Immediate Comma End

and spaces, and divide the remaining content into meaningful words. For example, we can easily find
that this is an instruction with a Label LOOP, and the opcode is Opcode. We can parse all the operands
of this instruction with simple logic, without having to process comments and spaces while parsing
operands. We can also find that there is an extra comma at the end of the instruction, so our assembler
can notice that this is an instruction with a syntax error. Finally, you will notice that we generate an
additional End token, indicating the end of the source code.

6

We have predefined all the token types that may be used in the assembler. You can find them in
include/assembler/token.hpp (for C++) or include/assembler-c/token.h (for C). You only
need to understand what kind of word each token type represents by reading the comments.

4.1.2 Your Task: Parse Tokens of Specific Types

In this step, you do not need to implement a complete parser, since it is not the core part of the lab. On
the contrary, we have implemented most of the parser’s functions for you, including the parser’s driver
and the parsing of some complex tokens. Furthermore, in this step, you do not need to care about the
syntax rules of LC-3 assembly code. You are only required to implement the functions that parse
two simple token types:

* parse_decimal_number (): Parse a decimal signed integer, such as +13, -42, and 100.
* parse_string literal(): Parse a string literal, such as "Hello World".

We have defined the prototypes of these two functions in solution/solution.cpp and solution
/solution.c. Please implement one of them according to the programming language you choose.
We have also attached detailed documentation comments in the code to describe the functions, and
provided some example inputs and outputs to guide your implementation.

It is worth noting that for parse_decimal_number (), you do not need to convert the textual
representation of a decimal integer to the corresponding integer value. This function is only used
to inform the parser of the end position of the decimal integer token, without the need to parse the value
of the integer.

Since you are directly processing strings in this step, you may fail the test due to processing too few
or too many characters, or ignoring boundary conditions. In addition to the test methods mentioned
in Section 3.2, you can also run 1c3-assembler directly to observe which tokens the assembler has
generated:

./1c3-assembler example.asm --tokens

Here, the -—tokens option is used to instruct 1c3-assembler to output all the tokens it sees and stop.
If you find that the list of tokens output is different from what you expected, you need to check whether
you have correctly implemented these two functions.

If you have correctly implemented these two functions, you should be able to pass 4 additional
tests:

7 - ParserTest.TokenStringliteral 8 - ParserTest.TokenImmediateAndNumber
9 - ParserTest.TokenComment 11 - ParserTest.TokenMixed

4.2 Step 2: Package Tokens into Instructions

As we mentioned earlier, our assembler processes the source code in units of tokens. In the first step,
we have broken down the source code into a series of tokens. When completing this step, you can
forget about irrelevant content such as spaces and comments, and you do not need to process characters
in the source code.

In this step, we need to convert a sequence of tokens into an instruction. In solution/solution.
cpp and solution/solution.c, we have defined the parse_instruction() function and provided
part of its implementation. This function is used to parse from the current token until a complete
instruction is parsed and returned. Specifically, we need to parse whether the instruction has a label,

the content of the label, the opcode of the instruction, and all the operands of the instruction. You need
to complete this function according to the documentation comments we provide.

Although you do not need to write the code to parse the operand list (we have provided the Parser: :
parse_operand_list () function for students using C++, and the parser_parse_operand_list ()
function for students using C), we still need to consider how to convert a token into an actual operand.
For example, we need to convert a token of type Register with content RO into an actual register
number (i.e., the integer 0). We have implemented the conversion of most operands from tokens, but
we have left you with a small challenge: You are required to implement the string_to_integer
() function, which converts the textual representation of an Immediate or Number token into the
corresponding integer value. You need to handle the prefixes that an immediate may have (#, x, and
b), handle the possible positive and negative signs, and return an error when the conversion result
overflows. We have defined the prototype of this function in solution/solution. cpp and solution
/solution.c, and you need to implement this function according to the documentation comments we
provide.

When you complete the two functions required in this step, you can test whether your assembler can
correctly generate the instruction sequence. In addition to the test methods mentioned in Section 3.2,
you can also run 1c3-assembler directly to observe which instructions the assembler has generated:

./1c3-assembler example.asm --instructions

Here, the -—instructions option is used to instruct 1c3-assembler to output all the instructions it
sees and stop. If you find that the list of instructions output is different from what you expected, you
need to check whether you have correctly implemented these two functions. In addition, the assembler
always outputs immediate numbers in decimal form, so you need to correctly convert the immediates
you use in the input to decimal to observe whether they are consistent.

If you have correctly implemented these two functions, you should be able to pass 18 additional
tests:

13 - InstructionTest.AddIntegerOperand 20 - as-check-origl 21 - as-check-orig2

28 - instr-check-labell 29 - instr-check-label2 30 - instr-check-operand-countil
31 - instr-check-operand-count2 32 - instr-check-operand-count3 35 - instr-check-operand-range3
39 - instr-check-operand-typel 40 - instr-check-operand-type2 41 - instr-check-operand-type3
44 - parse-label2 45 - parse-operand-listl 46 - parse-operand-list2

47 - parse-operand-list3 48 - parse-operand-list4 49 - parse-operand-listb

4.3 Step 3: Check the Legality of Instructions

Now we have the instruction sequence. Before translating these instructions into binary code, we need
to check whether these instructions are legal. Since checking the legality of instructions is not the
core task of this lab, we have implemented most of the checking logic for you. You can find our
checking logic for operands in Instruction: :add_operand(), and the string_to_integer () you
implemented in the previous step will be called here. You can also find our checking logic for the
entire instruction in Instruction: :validate_and_emit_diagnostics(), which includes checking
whether the number of operands of the instruction is correct, whether the types of operands are correct,
etc.

In this step, you need to implement Instruction::immediate_range() (for students using
C++) or get_instruction_immediate_range() (for students using C), which is a small part of
the logic of Instruction: :validate_and_emit_diagnostics() function, to deepen your under-
standing of the legal range that a binary integer of a specific number of bits can represent. They have
been defined in solution/solution.cpp and solution/solution. c respectively.

This function returns the legal range of the immediate operand in an instruction. For example,
the ADD and AND instructions allow their third operand to be an immediate number, and reserve 5 bits
for it. You need to calculate the range that a 5-bit signed integer can represent and return it through
this function. You may need to read page 656 of the textbook to understand which instructions allow
immediate operands and the number of bits of the corresponding operands. You do not need to handle
instructions that do not have immediate operands, and instructions that accept a label as an operand and
need to calculate the PC-relative offset.

If you have correctly implemented this function, you should be able to pass 4 additional tests:

33 - instr-check-operand-rangel 34 - instr-check-operand-range2
37 - instr-check-operand-rangeb 38 - instr-check-operand-range6

4.4 Step 4: Assign Addresses to Instructions and Scan Labels

We finally arrive at the core part of the assembler. We have done enough preparation to make it easy
to implement this step. You should read sections 7.3.2 and 7.3.3 of the textbook before completing this
step to understand what we need to do.

4.4.1 Compute the Address of Instructions

Our goal is to scan all the labels of the instructions and build a mapping table (symbol table) from
the label to the address where the label is located. To do this, we first calculate the address of each
instruction. In general, an instruction immediately follows the previous instruction, i.e., the addresses
of the two instructions differ by one word. Here we list some situations that will affect the address of
the instruction:

* The .0RIG pseudo-instruction specifies the starting address of the program. In our implementa-
tion, we set the address of the . ORIG pseudo-instruction itself and the address of the next instruc-
tion to the address specified by the .0RIG pseudo-instruction. For example, for the following
code:

.0ORIG x3000 ; Instruction 1
ADD RO, RO, #0 ; Instruction 2
ADD R1, R2, R3 ; Instruction 3

the addresses of instructions 1 and 2 are both x3000, and the address of instruction 3 is x3001,
which follows the normal rule.

When implementing this function, you can assume that the first element of the instruction se-
quence is definitely the .0ORIG pseudo-instruction, and there will be no other .0RIG pseudo-
instructions in the instruction sequence.

* The .BLKW pseudo-instruction allocates a certain amount of memory based on the current address.
This will affect the address of the instruction following the . BLKW pseudo-instruction.

You need to carefully understand the meaning of instructions and pseudo-instructions to find all factors
that will affect the address of the next instruction.

You need to implement the Assembler: :assign_addresses() function (for students using
C++) or the assign_addresses() function (for students using C), which have been defined in
solution/solution.cpp and solution/solution.c, respectively.

We have provided corresponding test cases to check whether your address assignment is correct.
In addition to the test methods mentioned in Section .2, you can also run 1c3-assembler directly to
observe the addresses of the instructions:

./1c3-assembler example.asm

We will output the address of each instruction in hexadecimal before each binary instruction. However,
since you have not implemented the specific translation function yet, you will see incorrect binary
instructions. Don’t worry, we will implement this feature soon.

4.4.2 Scan Labels

When you have calculated the address of each instruction, you will find that scanning labels and build-
ing the symbol table becomes very simple. You only need to traverse each instruction, and if you find
that an instruction has a label, you should take out the address of this instruction that has been calcu-
lated, and store the label and address in the symbol table. However, you also need to check whether a
label is redefined and report an error on the interface provided by the framework. We have defined the
Assembler::scan_label () function (for students using C++) and the scan_label () function (for
students using C), in solution/solution.cpp and solution/solution. c, respectively.
When you have completed this step, you should be able to pass 1 additional test:

23 - as-scan-label?2

4.5 Step 5: Translate Instructions into Binary Code

Now you have come to the most difficult part of the entire lab. In this step, you need to implement
several small functions to convert each part of the instruction. Finally, you need to implement two
larger functions that call these small functions to complete the translation of the instruction. It is worth
noting that all functions in this step work under the uint16_t type, i.e., 16-bit unsigned integers.
Although our assembler ultimately outputs binary code in text form, you do not need to process text
output but only need to store the binary code in a variable of type uint16_t. In this process, you will
use many bitwise operations, so make sure you are familiar with the meaning and usage of each bitwise
operation.

We handle regular instructions and pseudo-instructions separately, because each regular instruction
is strictly translated into a uint16_t, while pseudo-instructions are not. For example, .BLKW needs to
generate multiple uint16_t, while .FILL only needs to generate one uint16_t.

4.5.1 Translate Regular Instructions

We divide a regular instruction such as ADD and NOT into two parts: the opcode and the operands. The
operands may have different types, such as a register, an immediate number, or a label.

In LC-3 assembly code, the opcode of an instruction consists of 4 bits. For example, the opcode
of the ADD instruction is 0001, which is 1 in decimal. We have defined the translate_opcode ()
function for this conversion. It is quite simple: you only need to return the corresponding 4-bit integer
value according to the given opcode enumeration. We have implemented half of the opcode conversion
work for you to reduce your workload. You can refer to our implementation to complete the remaining
opcode conversions. You can find all the opcodes in include/assembler/opcode.def.

Next, you need to implement the translation of operands. If you have read the code in include/
assembler/opcode.hpp, you will notice that we store different types of operands in the same structure
and need to check whether an operand is “really this type” before accessing a specific type of operand.

10

However, you do not need to perform such checks here, because we have checked the legality of the
instruction. This means that you can assume that, for example, the first operand of the ADD instruction
is definitely a register operand, without further checks at runtime.

In LC-3, a register operand is encoded in 3 bits. Considering that the binary encoding of a register
operand may be placed in different positions, you also need to move the encoding of the register operand
to the correct position. We have defined the translate_register () function for this conversion. You
can follow the documentation comments to implement it.

Similarly, immediate operands are always placed at the end of the instruction, but they need to be
truncated to meet the bit requirements of the instruction for immediate operands. You need to implement
the translate_immediate() function to complete this conversion.

Finally, you need to implement the translate_label() function to complete the translation of
labels. This function is slightly more complex, and you need to complete the following tasks:

* Check whether the label exists in the symbol table, and report an error if it does not.
* Get the address of the label and correctly calculate the PC-relative offset.

* Check whether this offset is within the legal range according to the number of bits required by
the instruction.

 Truncate this offset to the required number of bits and return it.

When you have completed the implementation of all these small functions, you need to implement
the translate_regular_instruction() function to complete the translation of a complete regular
instruction. You need to call the 4 small functions you implemented above to convert each part of an
instruction. We have provided the implementation of the translation of some regular instructions, and
you can refer to them to complete the translation of the remaining instructions.

4.5.2 Translate Pseudo-instructions

The translation of pseudo-instructions is relatively easy, since we do not need to divide them into dif-
ferent parts for translation. We choose to generate the corresponding translation results directly based
on the opcode of the pseudo-instruction:

* For the .ORIG and .END pseudo-instructions, no translation result needs to be generated.

* For the .FILL pseudo-instruction, the binary form of the first operand is directly used as the
translation result.

* For the .BLKW and . STRINGZ pseudo-instructions, multiple translation results are generated ac-
cording to the meaning of the instruction.

You need to implement the translate_pseudo () function according to the above logic. Please read
the documentation comments of this function to understand how to handle its input and output.

You have now completed your assembler. You should be able to pass all the test cases, including
those we provide and those you write yourself. You can also run 1c3-assembler directly, provide it
with an LC-3 assembly code file, and observe whether its output is correct.

11

5 Tips

Here are some important tips for you:

In this lab, the correctness of your implementation accounts for 50% of the score, and the re-
port accounts for the other 50%. If you use our lab framework, you need to ensure that your
implementation passes all test cases, including those we provide and those you write yourself.

You should pay attention to your coding style. You should use appropriate variable names, func-
tion names, indentation, etc. For complex parts, you need to include some comments to explain
your code. You can also use clang-format to format your code, but this is not required.

If you use our lab framework, we have enabled the highest warning level for you. Please pay
attention to every warning message generated by the compiler, as they may indicate potential
problems in your code.

If you use our lab framework, you should not introduce any third-party libraries. You can only
use the C/C++ standard library.

You should explain your implementation ideas in the lab report, including the implementation
ideas of each part and explanations of key parts of the code.

We do not have strict requirements on the format of your lab report, but you should ensure that
your report is clear, readable, and formatted consistently.

If you DO NOT use our lab framework and choose to implement it from scratch, you need to pay
attention to the following points:

You can use third-party libraries appropriately, but you need to explain in the lab report which
libraries you used. The core part of the assembler must be implemented by yourself.

We do not limit the build system you use. You can use CMake, make, or other build systems, or
directly use the compiler for compilation. You need to explain how your code is built in the report.
If your project uses third-party libraries, you need to explain how to configure these libraries in
the report, or you can include the source code of these libraries directly in your project, as we do
in our framework.

You must include detailed comments in your code to explain your logic.

You need to write test cases to verify the correctness of your code.

It is worth noting that we do not strictly define the syntax of LC-3, so different implementations
may differ in some details. Therefore, your implementation does not need to pass all the test
cases we provide in the lab framework. You can explain your design choices in the lab report.

Your assembler must be able to accept file input and output, i.e., read LC-3 assembly code from a
file and output the binary code to a file. You need to handle command line arguments and explain
how to use your assembler in your report.

Your assembler must be able to output the translated binary code and its address in text form at
least.

Your assembler must be able to exit with an error return value when there are errors in the input.
We recommend you to implement simple diagnostic information reporting.

12

6 Submission

If you use our lab framework, you need to organize your submission content as follows:

PBxxxkk*xxx Name laba.zip
| == ./PB#**x*x*x*_Name report.pdf
“-- ./solution.c / ./solution.cpp

You need to submit the correct file according to the programming language you use. If you use C,
you need to submit the solution. c file; if you use C++, you need to submit the solution. cpp file.
You do not need to submit other files in the framework or the compiled files.

If you choose to implement it from scratch, you need to organize your submission content as fol-
lows:

PBxxxx*x*x*x*x Name laba.zip
| == ./PB*x*x*x**x*_ Name report.pdf
"-- Your code structure

Note that you should NOT include build artifacts such as binary files, intermediate files, etc., in
your submission.

13

	Introduction
	Environment Setup
	Configure the C and C++ Compilation Environment
	Install CMake
	Setup your IDE (Optional)
	Configure and Compile the Framework

	Framework Introduction
	Language Standard and Third-party Dependencies
	Test Your Code
	Run the Test
	Write Your Own Test
	Run the Assembler

	Step by Step Completion of the Lab
	Step 1: Tokenize LC-3 Assembly Code
	What is a Token?
	Your Task: Parse Tokens of Specific Types

	Step 2: Package Tokens into Instructions
	Step 3: Check the Legality of Instructions
	Step 4: Assign Addresses to Instructions and Scan Labels
	Compute the Address of Instructions
	Scan Labels

	Step 5: Translate Instructions into Binary Code
	Translate Regular Instructions
	Translate Pseudo-instructions

	Tips
	Submission

